赵迪

发布者:周春宇发布时间:2023-02-22浏览次数:1810


姓名

赵迪

职称

讲师

主要研究领域

偏微分方程数值解、局部间断有限元方法

电子邮箱

jszhaodi@usst.edu.cn

办公室

理学院909

所在部门

理学院数学系


教育背景与工作经历

教育背景

博士,应用数学,南京大学,2016-2020


工作经历

讲师,上海理工大学,2020-至今



科(教)研项目及成果


1). Local discontinuous Galerkin methods with generalized alternating numerical fluxes for two-dimensional linear Sobolev equation, J Sci Comput., (2019)

2). On a Ricci quarter-symmetric metric recurrent connection and a projective Ricci quarter-symmetric metric recurrent connection in a Riemannian manifold, Filomat, (2020)

3). Geometries for a mutual connection of semi- symmetric metric recurrent connections, Filomat, (2020)

4). Geometric characteristics of a manifold with a symmetric-type quarter-symmetric projective conformal non-metric connection. Filomat, (2021)

5). Geometrical and physical properties of $W_2$-symmetric and recurrent manifolds. Filomat, (2022)

6). Geometries and topologies of a manifold with $\pi$-quarter-symmetric projective conformal and mutual connections. Filomat, (2022)

7). On quarter symmetric connections preserving geodesics, B. Malays Math Sci So., (2022)

8).Local error estimates for Runge–Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimensio n with discontinuous initial data, J Sci Comput., (2022)



主讲课程

高等数学等


学术活动与社会服务



荣誉





返回原图
/