赵桂华

发布者:周春宇发布时间:2023-02-22浏览次数:1512


姓名

赵桂华

职称

副教授

主要研究领域

随机控制、随机微分方程及其应用

电子邮箱

zgh-hit1108@163.com

办公室

理学院816

所在部门

理学院数学系


教育背景与工作经历

教育背景

博士,计算数学,哈尔滨工业大学2004-2009

学士,数学与应用数学,哈尔滨工业大学2000-2004


工作经历

副教授,上海理工大学,2020-至今

副教授江苏科技大学2019-2020

讲师,江苏科技大学2009-2020

博士后,东南大学博士后流动站,2014-2018

访问学者,纽约大学2018-2019


科(教)研项目及成果

作为项目负责人获得国家自然科学青年基金资助。在国内外学术刊物上发表论文10多篇。


  1. Gui-Hua Zhao, Hui Liang. Finite-time stability and instability of nonlinear impulsive systems. Advances in Applied Mathematics and Mechanics, 15(1) (2023) 49-68.

  2. Gui-Hua Zhao, Shu-Jun Liu. Finite-time stabilization of nonlocal Lipschitzian stochastic time-varying nonlinear systems with Markovian switching. Science China Information Sciences, 65 (2022) 212204:1–212204:21.

  3. 张莉娜, 赵桂华. 一类线性带泊松跳随机微分方程的有限时间随机镇定性. 重庆理工大学学报(自然科学), 35(4) (2021) 215-218.  

  4. Gui-Hua Zhao, Stochastic input-to-state stability of stochastic nonlinear systems with Markovain switching, 2020 39th Chinese Control Conference, 938-943.

  5. Gui-Hua Zhao, Shu-Jun Liu. Adaptive finite-time stabilization of weak solutions for a class of stochastic nonlinear systems with parametric uncertainty.2018 37th Chinese Control Conference, 1539-1544.

  6. Gui-Hua Zhao, Jian-Chao Li, Shu-Jun Liu. Finite-time stabilization of weak solutions for a class of non-local Lipschitzian stochastic nonlinear systems with inverse dynamics. Automatica,98 (2018) 285-295.(regular paper)

  7. Gui-hua Zhao, Shu-Jun Liu, Finite-time stabilization for a class of stochastic nonlinear systems with Markovian switching, 2017 Chinese Automation Congress,168-173.

  8. Jian-Chao Li, Gui-Hua Zhao, Shu-Jun Liu. Finite-time stabilization for a class of stochastic nonlinear systems with stochastic inverse dynamics. 2016 28th Chinese Control and Decision Conference, 2284-2289.

  9. Guihua Zhao. Global output feedback stabilization for a class of uncertain stochastic nonlinear retarded systems with Markovian switching. 2015 34th Chinese Control Conference, 1140-1145.

  10. Guihua Zhao, Minghui Song, Zhanwen Yang. Mean-square stability of analytic solution and Euler-Maruyama method for impulsive stochastic differential equations. Applied Mathematics and Computation. 2251 (2015) 527-538.

  11. 赵桂华,张海涛,孙波. 随机脉冲微分方程的p阶矩稳定性分析. 黑龙江大学自然科学学报. 31 (2014):747-751.

  12. GuihuaZhao, Mingzhu Liu. Numerical methods for nonlinear stochastic delay differential equations with jumps. Applied Mathematics and Computation.233 (2014) 222-231.

  13. 赵桂华,李春香,孙波. 带跳随机微分方程的Euler-Maruyama方法的几乎处处指数稳定性和矩稳定性.计算数学. 36 (2014) 65-74.

  14. 赵桂华,王黎明. 带泊松跳马尔科夫调制随机微分方程的渐近稳定性. 河北大学自然科学学报31 (2011) 578-580.

  15. Mingzhu Liu, Guihua Zhaoand Minghui Song, Stability of the semi-implicit Euler method for a linear impulsive stochastic differential equation, Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications &Algorithms 18 (2011) 123-134.

  16. Guihua Zhao, MinghuiSong ,Mingzhu Liu. Exponential stability of Euler-Maruyama solutions for impulsive stochastic differential equations with delay. Applied Mathematics and Computation 215 (2010) 3425-3432.

  17. Guihua Zhao, Minghui Song, Mingzhu Liu. Numerical solutions of stochastic differential delay equations with jumps. International Journal of Numerical Analysis and Modeling. 6 (2009) 659-679.

  18. Guihua Zhao, Mingzhu Liu. Stability of the Milstein method for the impulsive stochastic differential equation. Journal of Natural Science of Heilongjiang University. 26 (2009) 133-136.    

  19. Guihua Zhao, Mingzhu Liu, Wanjin Lv. Exponential p-stability of impulsive stochastic differential equations with delays. Journal of Natural Science of Heilongjiang University. 26 (2009) 722-727.


主讲课程

高等数学;高等代数


学术活动与社会服务

第一届不确定性系统分析与仿真专业委员会委员


荣誉




返回原图
/